KLPC Series POWR-PRO® ${ }^{\circledR}$ Class L Fuses

600 VAC • Time-Delay • 200-6000 Amperes

KLPC series POWR-PRO fuses provide ideal overcurrent protection for circuits from 200 through 6000 amperes. KLPC series POWR-PRO fuses specification-grade construction and performance meet or exceed the most stringent project specifications: 99.9\% pure silver links, silverplated copper end bells, glass-reinforced melamine bodies, O-ring seals between body and end bells, and granular quartz fillers.

KLPC series POWR-PRO fuses are the only UL listed Class L fuses that provide a minimum of ten seconds time delay at 500\% rated
current and are also as current-limiting as the fastest Class L fuse on the market. On average, the peak let-through currents of KLPC series fuses are 10% less than any other time-delay Class L fuse.

Applications

Service switches
Switchboard mains and feeders
Bolted pressure contact switches
Motor control center mains
Large motor branch circuits
UL Listed series-rated protection for molded case circuit breaker panelboards and loadcenters. (See panelboard manufacturers' literature for recommended fuse rating.)
Primary and secondary protection for transformers
Protection of power circuit breakers

Features and Benefits

- Eliminate unnecessary downtime - KLPC POWR-PRO series timedelay withstands system surges and keeps your circuits in service.
- Best protection for system components - Maximum current limitation means less equipment and system damage when short circuits occur. Reduced damage means that electrical service can be restored quickly, reducing costly downtime, and often permitting equipment repair rather than replacement.
- Coordinates with other system components - KLPC series fuses provide maximum coordination with fuses and circuit breakers both on the line and load side of the fuses. See the Fuseology section of this catalog for additional information.
- Eliminate need to oversize fuses - This may permit the use of smaller, less expensive switches. Since lower rated fuses are more currentlimiting, equipment receives even better protection.
- 300kA Interrupting Rating - Littelfuse self-certified to 300,000 amperes as standard. Meets future trend towards higher available short circuit currents.

Specifications

Voltage Ratings:
Interrupting Ratings:

Ampere Range: Approvals:

Ampere Ratings

200	500	800	1350	2000	3500
250	600	900	1400	2100	4000
300	601	1000	1500	2200	4500
350	650	1100	1600	2300	5000
400	700	1200	1800	2500	6000
450	750	1300	1900	3000	

Example part number (series \& amperage): KLPC 1000

KLPC Series POWR-PRO® ${ }^{\circledR}$ Class L Fuses

600 VAC • Time-Delay • 200 - 6000 Amperes

FIG. 1

FIG. 4

FIG. 2

FIG. 5

FIG. 3

Amperes	Fig. No.	Dimensions in Inches (mm in parentheses)												
		A	B	C	D	E	F	G	H	J	K	L	M	N
200-800	1	$\begin{array}{r} 33 / 4 \\ (95.3) \\ \hline \end{array}$	$\begin{gathered} 53 / 4 \\ (146.1) \end{gathered}$	$\begin{gathered} 6^{3 / 4} \\ (171.5) \end{gathered}$	-	-	$\begin{gathered} 85 / 8 \\ (219.1) \end{gathered}$	-	-	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 21 / 2 \\ (63.5) \end{gathered}$	$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	$\begin{gathered} 5 / 8 \times 1 \frac{1 / 8}{8} \\ (15.9) \times(28.6) \end{gathered}$	-
801-1200	2	$\begin{gathered} \hline 33 / 4 \\ (95.3) \end{gathered}$	$\begin{gathered} 53 / 4 \\ (146.1) \end{gathered}$	$\begin{gathered} 6^{3 / 4} \\ (171.5) \end{gathered}$	$\begin{gathered} 91 / 4 \\ (235.0) \end{gathered}$	$\begin{gathered} 91 / 2 \\ (241.3) \end{gathered}$	$\begin{gathered} 10^{3 / 4} \\ (273.1) \end{gathered}$	-	-	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 2^{1 / 2} \\ (63.5) \end{gathered}$	$\begin{gathered} \hline 3 / 8 \\ (9.5) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 8 \times 3 / 4 \\ (15.9) \times(19.1) \end{gathered}$	$\begin{gathered} 5 / 8 \times 1 \frac{1 / 8}{8} \\ (15.9) \times(28.6) \end{gathered}$
1201 - 1600	2	$\begin{array}{r} \hline 33 / 4 \\ (95.3) \\ \hline \end{array}$	$\begin{gathered} 53 / 4 \\ (146.1) \end{gathered}$	$\begin{gathered} 63 / 4 \\ (171.5) \end{gathered}$	$\begin{gathered} 91 / 4 \\ (235.0) \end{gathered}$	$\begin{gathered} 91 / 2 \\ (241.3) \end{gathered}$	$\begin{gathered} 10^{3} / 4 \\ (273.1) \end{gathered}$	-	-	$\begin{gathered} 2^{3 / 8} \\ (60.3) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	$\begin{gathered} \hline 7 / 16 \\ (11.1) \end{gathered}$	$\begin{gathered} 5 / 8 \times 3 / 4 \\ (15.9) \times(19.1) \end{gathered}$	$\begin{gathered} 5 / 8 \times 11 / 8 \\ (15.9) \times(28.6) \end{gathered}$
1601-2000	2	$\begin{array}{r} 33 / 4 \\ (95.3) \\ \hline \end{array}$	$\begin{gathered} 53 / 4 \\ (146.1) \\ \hline \end{gathered}$	$\begin{gathered} 6^{3 / 4} \\ (171.5) \\ \hline \end{gathered}$	$\begin{gathered} 91 / 4 \\ (235.0) \\ \hline \end{gathered}$	$\begin{gathered} 91 / 2 \\ (241.3) \end{gathered}$	$\begin{array}{r} 103 / 4 \\ (273.1) \\ \hline \end{array}$	-	-	$\begin{gathered} 2^{3 / 4} \\ (69.9) \\ \hline \end{gathered}$	$\begin{gathered} 31 / 2 \\ (88.9) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ (12.7) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 8 \times 3 / 4 \\ (15.9) \times(19.1) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 8 \times 1 \frac{1}{8} \\ (15.9) \times(28.6) \\ \hline \end{gathered}$
2001-2500	3	$\begin{gathered} 4 \\ (101.6) \\ \hline \end{gathered}$	$\begin{gathered} 53 / 4 \\ (146.1) \\ \hline \end{gathered}$	$\begin{gathered} 6^{3 / 4} \\ (171.5) \\ \hline \end{gathered}$	$\begin{gathered} 91 / 4 \\ (235.0) \\ \hline \end{gathered}$	$\begin{gathered} 91 / 2 \\ (241.3) \\ \hline \end{gathered}$	$\begin{gathered} 103 / 4 \\ (273.1) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 8 \\ (41.3) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 4 \\ (44.5) \end{gathered}$	$\begin{gathered} \hline 31 / 2 \\ (88.9) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (127.0) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 4 \\ (19.1) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 8 \times 3 / 4 \\ (15.9) \times(19.1) \end{gathered}$	$\begin{gathered} 5 / 8 \times 11 / 8 \\ (15.9) \times(28.6) \end{gathered}$
2501-3000	3	$\begin{gathered} 4 \\ (101.6) \\ \hline \end{gathered}$	$\begin{gathered} 53 / 4 \\ (146.1) \end{gathered}$	$\begin{gathered} 6^{3 / 4} \\ (171.5) \\ \hline \end{gathered}$	$\begin{gathered} 91 / 4 \\ (235.0) \end{gathered}$	$\begin{gathered} 91 / 2 \\ (241.3) \end{gathered}$	$\begin{gathered} 103 / 4 \\ (273.1) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 8 \\ (41.3) \end{gathered}$	$\begin{gathered} 13 / 4 \\ (44.5) \end{gathered}$	$\begin{gathered} 4 \\ (101.6) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (127.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 4 \\ (19.1) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 8 \times 3 / 4 \\ (15.9) \times(19.1) \end{gathered}$	$\begin{gathered} 5 / 8 \times 11 / 8 \\ (15.9) \times(28.6) \end{gathered}$
3001-4000	4	$\begin{array}{\|c\|} \hline 4 \\ (101.6) \end{array}$	$\begin{gathered} 53 / 4 \\ (146.1) \end{gathered}$	$\begin{gathered} \hline 63 / 4 \\ (171.5) \end{gathered}$	$\begin{gathered} 91 / 4 \\ (235.0) \end{gathered}$	$\begin{gathered} 91 / 2 \\ (241.3) \end{gathered}$	$\begin{gathered} 103 / 4 \\ (273.1) \end{gathered}$	$\begin{gathered} 13 / 4 \\ (44.5) \end{gathered}$	$\begin{gathered} 31 / 4 \\ (82.6) \end{gathered}$	$\begin{gathered} 4^{3 / 4} \\ (120.7) \end{gathered}$	$\begin{gathered} 53 / 4 \\ (146.1) \end{gathered}$	$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{gathered} 5 / 8 \times 13 / 8 \\ (15.9) \times(34.9) \end{gathered}$	$\begin{gathered} 5 / 8 \times 13 / 8 \\ (15.9) \times(34.9) \end{gathered}$
4001-5000	5	$\begin{array}{\|c\|c\|} \hline 4 \\ (101.6) \end{array}$	$\begin{gathered} 53 / 4 \\ (146.1) \end{gathered}$	-	$\begin{gathered} 91 / 4 \\ (235.0) \end{gathered}$	-	$\begin{gathered} 103 / 4 \\ (273.1) \end{gathered}$	$\begin{gathered} 15 / 8 \\ (41.3) \end{gathered}$	$\begin{gathered} 31 / 4 \\ (82.6) \end{gathered}$	$\begin{gathered} 51 / 4 \\ (133.4) \end{gathered}$	$\begin{gathered} 71 / 8 \\ (181.0) \end{gathered}$	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 5 / 8 \text { DIA. } \\ (15.9) \end{gathered}$	-
5001 - 6000	5	$\begin{gathered} 4 \\ (101.6) \end{gathered}$	$\begin{gathered} 53 / 4 \\ (146.1) \end{gathered}$	-	$\begin{gathered} 91 / 4 \\ (235.0) \end{gathered}$	-	$\begin{gathered} 10^{3 / 4} \\ (273.1) \end{gathered}$	$\begin{gathered} 15 / 8 \\ (41.3) \end{gathered}$	$\begin{gathered} 31 / 4 \\ (82.6) \end{gathered}$	$\begin{gathered} 53 / 4 \\ (146.1) \end{gathered}$	$\begin{gathered} 71 / 8 \\ (181.0) \end{gathered}$	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} \text { 5/8 DIA. } \\ (15.9) \end{gathered}$	-

KLPC Series POWR-PRO® ${ }^{\circledR}$ Class L Fuses

600 VAC • Time-Delay • 200-6000 Amperes

Current-Limiting Effects of KLPC (600V) fuses

Short Circuit Current*	Apparent RMS Symmetrical Gurrent for Various Fuse Ratings							
	$\mathbf{8 0 0 A}$	$\mathbf{1 2 0 0 A}$	$\mathbf{1 6 0 0 A}$	$\mathbf{2 0 0 0 A}$	$\mathbf{3 0 0 0 A}$	$\mathbf{4 0 0 0 A}$	$\mathbf{5 0 0 0 A}$	$\mathbf{6 0 0 0 A}$
$\mathbf{5 , 0 0 0}$	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
$\mathbf{1 0 , 0 0 0}$	8,800	10,000	10,000	10,000	10,000	10,000	10,000	10,000
$\mathbf{1 5 , 0 0 0}$	10,500	13,500	15,000	15,000	15,000	15,000	15,000	15,000
$\mathbf{2 0 , 0 0 0}$	12,000	15,000	19,000	20,000	20,000	20,000	20,000	20,000
$\mathbf{2 5 , 0 0 0}$	13,000	16,000	21,000	24,000	25,000	25,000	25,000	25,000
$\mathbf{3 0 , 0 0 0}$	14,000	18,000	23,000	26,000	30,000	30,000	30,000	30,000
$\mathbf{3 5 , 0 0 0}$	15,000	19,000	24,000	27,000	32,000	35,000	35,000	35,000
$\mathbf{4 0 , 0 0 0}$	16,000	20,000	25,000	28,000	34,000	40,000	40,000	40,000
$\mathbf{5 0 , 0 0 0}$	17,000	22,000	27,000	31,000	37,000	42,500	50,000	50,000
$\mathbf{6 0 , 0 0 0}$	18,000	24,000	29,000	34,000	40,000	46,000	52,000	60,000
$\mathbf{8 0 , 0 0 0}$	20,000	26,000	32,000	37,000	44,000	51,000	57,000	70,000
$\mathbf{1 0 0 , 0 0 0}$	21,000	27,000	34,000	40,000	46,000	57,000	65,000	75,000
$\mathbf{1 5 0 , 0 0 0}$	23,000	31,000	38,000	44,000	54,000	67,000	75,000	87,000
$\mathbf{2 0 0 , 0 0 0}$	24,000	34,000	42,000	46,000	57,000	70,000	80,000	95,000

* Prospective RMS Symmetrical Amperes Short-Circuit Current

Note: Data derived from Peak Let-Thru Curves

